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Abstract. In this paper Bayesian analysis and Wiener process are used in order to build an algorithm
to solve the problem of global optimization. The paper is divided in two main parts. In the first part
an already known algorithm is considered: a new (Bayesian) stopping rule is added to it and some
results are given, such as an upper bound for the number of iterations under the new stopping rule.
In the second part a new algorithm is introduced in which the Bayesian approach is exploited not
only in the choice of the Wiener model but also in the estimation of the parameter �2 of the Wiener
process, whose value appears to be quite crucial. Some results about this algorithm are also given.
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1. Introduction

We consider the problem of finding:

f� = max
x2[a;b]

f(x);

where f : R �! R is the objective function, assumed to be continuous, and
[a; b] � R is the feasible set. Many deterministic and probabilistic methods have
been proposed to solve this problem (see [14] and [15]). Among them, those
consisting in giving a stochastic model of the objective function, seem to be of
particular interest. In them the objective function is seen as a particular realization
of a stochastic process (see also [9]). Formally, given the stochastic process

ff(x;!); x 2 X;! 2 
g
where
 is a probability space, there exists a! such that the objective function f(x)
is equal to f(x;!). For simplicity of investigation, the Wiener process is generally
used as a stochastic process to model the objective function. The advantage of
this process is mainly due to the simplicity of the formulae used to update the
distribution of the random variables f(x;!) of the process, after each observation
of the objective function. Some possible critics to this choice will be discussed in
Section 3. In Section 2 we give a quick description of the algorithm (see also [9]
or [16]) with the introduction of a new stopping rule. We also give some results



58 M. LOCATELLI

about the algorithm. Section 3 gives analogous results but for the case in which
the parameter � of the Wiener process is not a priori given, but only an a priori
distribution is defined on it.

2. A New Stopping Rule

We first introduce some notation:
� x1 = a < x2 < � � � < xn�1 < xn = b are the points where the function has

been observed till iteration n;
� f1; . . . ; fn are the corresponding function values;
� f�n = maxff1; . . . ; fng is the record;
� zn = (x1; . . . ; xn; f1; . . . ; fn) is the vector of the information collected till

iteration n;
We also recall that, if we model the function with the Wiener process with parameter
�, the distribution of the random variable f(x), for x 2 [xi�1; xi] and conditioned
on the information zn is normal with mean:

�(x j zn) = fi
x� xi�1

xi � xi�1
+ fi�1

xi � x

xi � xi�1
;

and variance:

v2(x;� j zn) = �2 (x� xi�1)(xi � x)

xi � xi�1

(see, e.g. [6], [9]).
We introduce the following function:

Tn(x;�) = E[maxff(x)� f�n; 0g j zn] =
Z 1

f�n

(t� f�n) dFx(t); (1)

where Fx is the normal distribution with mean �(x) and variance v(x;�) (here
and in what follows the conditioning on zn of � and v is understood). We can also
write:

Tn(x;�) = v(x;�)	
�
f�n � �(x)

v(x;�)

�

where

	(x) =

Z 1

x
(t� x) d�(t) = '(x)� x[1� �(x)]; (2)

� is the standardized normal distribution and ' its density (see, e.g. [3] for more
information about 	). We have that (1) can be interpreted as the expected gain, or
the expected increment with respect to the record f�n, if we observe the function in
point x.

In order to introduce a new stopping rule we need to introduce the loss function:

L(zn; c) = �f�n + nc;
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where c is the cost of an observation of the function. We want to stop the search at
iteration n if the expected loss at iteration n+ 1 is greater or equal than the loss at
iteration n, independently from where we put the next observation.

Therefore we have:

stop if L(zn; c) � min
x2[a;b]

E[L(zn; x; f(x); c) j zn]

or, equivalently:

stop if max
x2[a;b]

Tn(x;�) � c: (3)

As an interpretation of this stopping rule we can say that we stop when the expected
improvement over the current record is smaller than the cost of an observation of
the function. It is questionable whether it is possible to find always a common unit
of measure for the cost of an observation and the expected gain. All the same the
form of the stopping rule is such that c can also be interpreted as a given accuracy
and we stop when the expected accuracy is lower than c, as can be clearly seen in
(3). The same cost structure was used, e.g. in [1]. Finally we give a quick descrip-
tion of the algorithm denoted with A(�), in order to underline its dependence on
the choice of the parameter �:

at iteration n:
1. choose:

y = arg max
x2[a;b]

Tn(x;�); (4)

2. if Tn(y;�) � c then STOP otherwise go to 3.;
3. if y 2 (xi�1; xi) for some i, 2 � i � n, then set 8 j � i : xj+1 = xj and
xi = y

4. evaluate f in y, set zn+1 = zn [ (y; f(y)) and f�n+1 = maxff�n; f(y)g;
5. go to the next iteration.

The rule for the selection of the next point at which the function has to be observed
is given by (4) and it is called the one-step optimal approach, in which the next
point is chosen in an optimal way assuming that it will be the last point at which
the function will be observed. It would also be possible to think about k-step look-
ahead rules, k > 1, in which at any iteration we should find where to put the next
k observations in order to maximize the expected improvement over the current
value of the record f�n (see, e.g. [9]). The problem is that the formulae become
rather cumbersome even for k = 2 and it is not clear if this increase in difficulty
carries better performance of the algorithm.

Now we give some results about the algorithm. First we need the following
lemma which shows that the algorithm never puts observations "too close" to each
other:



60 M. LOCATELLI

LEMMA 1. Assuming that the function has been observed in points x1; . . . ; xn,
then:

8x : 9i; 1 � i � n such that j x� xi j� c : Tn(x;�) � c;

where

c =

 
c
p

2�
�

!2

:

Therefore the algorithm will never observe the function at these points.
Proof. First we note that:

Tn(x;�) � v(x;�)	(0) =
v(x;�)p

2�

We now set �p = xi � x. Then we have:

v(x;�)p
2�

=

�
�p
2�

�s
(�x��p)�p

�x

We want to show that if �p < c then the given limitation from above of the
expected gain is smaller than c. It is equivalent to prove that:

�p(�x��p)

�x
�
 
c
p

2�
�

!2

�p(�x��p)

�x
� c

�p(�x��p) � c�x

We observe that if �p < c, being (�x ��p) < �x, the inequality is true. That
means the algorithm can not choose the next point in a position at a distance that
is smaller than c from a point in which the function has been already observed. E

Now it is easy to give an upper bound for the number of iterations with the given
stopping rule. We can not put a new observation at a distance smaller than c from
points where the function has been already observed. That means we will certainly
stop in, at most, b�a

c
iterations. So we have proved the following theorem:

THEOREM 1. The stopping rule

stop if max
x2[a;b]

Tn(x;�) � c

causes the algorithm to stop in a finite number of steps bounded from above by:

n� =
b� a

c
=
�2(b� a)

(c
p

2�)2
:
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In particular it is possible to show that there exists at least one function (for example
the constant one), for which the number of iterations has the order of magnitude of
n� for c tending to 0.

Indeed it can be shown for the constant function that the first 2n + 1 points
divide [a; b] into 2n equal subintervals and the maximum expected gain in any
subinterval is

v(
xi�1+xi

2 ;�)p
2�

=
�

2

s
�x

2�
:

Then after n steps we have �x = O
�
b�a
n

�
and therefore the expected gain will

be less than c if

n = O

 
(b� a)�2

4(c
p

2�)2

!
= O

�
1
4
n�
�
:

Lemma 1 could also be exploited to show that:

lim
n!1

max
i=1;...;n

(xi � xi�1) = 0; (5)

i.e. the set of points at which the function is observed if the algorithm is never
stopped, is dense in [a; b]. It is then immediate to prove consistency of the algorithm,
i.e.:

lim
n!1

f�n = f�

(see, e.g. [2] or [16] for proofs of consistency).

3. The Case �2 Not a priori Given

Till now we have worked with the hypothesis of�2 a priori known. Now we want to
turn to the more realistic situation in which �2 is not known and must be estimated
through the observations (see also [4] and [5]). We want to point out the reason
for this further development. The choice of � is crucial for the good behaviour
of the algorithm as it has been seen through experimentation (see the appendix).
It is possible to understand that by studying the behaviour of the algorithm for
� ! 0 and � ! 1. In the first case all the observations tend to be concentrated
around the best current point, so that we reduce to a local search and we lose
any characteristic of globality of the algorithm. In the second case we reduce to
a bisection method, where the point dividing the subinterval of maximum lenght
is chosen and which has not any good local characteristic and does not take into
account information given from function values. So we should avoid values of �
too small or too big. The problem is that "small" and "big" are not absolute concepts
but are relative to the form of the function. A possible solution is to evaluate f in
some points and find an estimate of � (for example through an estimator inspired
to the M.L.E., see [12]). The problem is that this kind of algorithm is generally
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meant for functions whose evaluation implies big costs, so that it would seem
preferable to avoid supplementary evaluations. Here we take a Bayesian approach,
by building a prior model both on the objective function and on the parameter of
the Wiener process. The proposed algorithm is adaptive in the sense that exploits
the information given by function values to give information about � through the
updating of a probability distribution function on �. For other considerations about
the algorithm and for a practical test which shows what has been said above, see
also [8].

3.1. UPDATING FORMULAE

We will give �2 not an a priori value but an a priori distribution which will be
updated after every observation. We consider a sample X1; . . . ;Xn from a normal
distribution with known mean m and variance �2 . It is well known that

Z =

Pn
i=1(Xi �m)2

�2

has a �2 distribution with n degrees of freedom (see, for example, [3]). As a
consequence, we will assume that the a priori distribution of �2 is such that the
distribution of s0

�2 is a �2 with a0 = 2 degrees of freedom, where s0 > 0 is a value
a priori fixed. It is important to see how the distribution of �2 is updated after
every observation. We shall proof that sn

�2 is distributed as a �2 with an degrees of
freedom; this is true for n = 0 and will be demonstrated to be true for every n by
induction, together with the formulae to update sn and an. We remember that if
y = g(x), g is a one-to-one function and X has density fX(x), then Y has density

fY (y) =

�����dg
�1(y)

dy

����� fX(g�1(y)) (6)

for every y inside the range of the function g (see [10]). If we set

x =
sn

�2 ;

then we have that the density of � is proportional to:

1
�an+1 e

� 1
2
sn
�2 :

Now using Bayes formula we obtain

g(� j f(xn)) / 1
�an+1 (e

�(1=2)(sn=�2))
1
�
e�(1=2�2)[(f(xn)��(xn))=v(xn ;1)]2 =

1
�an+2 e

�(1=2�2)[sn+(
f(xn)��(xn)

v(xn;1) )2]
;
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which means that sn+1
�2 is distributed as a �2 with an+1 degrees of freedom, where

an+1 = an + 1

sn+1 = sn +

�
f(xn)� �(xn)

v(xn; 1)

�2

:

Now we can write a new algorithm, which we denote with A(s0) to underline its
dependence on s0. The algorithm is equal to A(�) but for the substitution of the
expected gain Tn(x;�) with the expected gain:

E�jzn [Tn(x;�)];

or, equivalently from the point of view of the choice of the points at which the
function is observed, with the function:

Gn(x; s0) =
1p
sn
E�jzn [Tn(x;�)];

which has been used in the practical tests. It is possible to obtain an explicit
formula for the expected gain through heavy but elementary and non interesting
computations (see [7]).

One question might arise at this point: what is the advantage of removing the
dependence of the algorithm on the parameter �, if, in doing this, we introduce a
new parameter s0 ?

The fact is that while a bad choice for � has a constant influence on the algorithm
through all the iterations, a bad choice for s0 can be adaptively corrected by the
observations. In other words � is a fixed estimate while s0 is only an initial guess
which can be corrected. Therefore we expect that A(s0) is less sensitive to the
choice of the parameter. In appendix D this conjecture is made more clear through
an example.

3.2. FINITENESS OF THE ALGORITHM AND LACK OF CONSISTENCY

Now we give an upper bound of the number of iterations after which the given stop-
ping rule causes the algorithm to stop. We can prove the following theorem:

THEOREM 2. Given the stopping rule

stop if max
x2[a;b]

Gn(x; s0) � c;

then the algorithm stops in at most:

n� =
(b� a)p2

c2

iterations, where:

p = sup
�

1
2



�
n+ 2

2

��
:
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Proof. See Appendix A.

In order to prove the lack of consistency of the algorithm we need to introduce a
lemma:

LEMMA 2. At any step and with any a priori distribution the maximum of the
expected gain in the interval [xi�1; xi] should be searched for, under the hypothesis
�f = f(xi)� f(xi�1) > 0, in the interval [x; x0], where:

x =
xi�1 + xi

2

x
0

= x+
�f

2(f�n � f)

�x

2
(7)

f =
fi�1 + fi

2
:

Proof. We do not give the details of the proof, which are trivial (see [7]). By
examinining the derivative:

T
0

n(x;�) = v
0

(x;�)	
�
f�n � �(x)

v(x;�)

�
+

+v(x;�)	
0

�
f�n � �(x)

v(x;�)

��
f�n � �(x)

v(x;�)

�0

;

we see that, for any value of �, it is positive in [xi�1; x] and negative in [x0; xi],
where x0 is the point which minimizes:

�
f�n � �(x)

v(x; 1)

�

Then we have:

8 � and 8 x 2 [xi�1; x] : Tn(x;�) � Tn(x;�);

and:
8 � and 8 x 2 [x0; xi] : Tn(x

0;�) � Tn(x;�):

Therefore the maximum of the expected gain is in [x; x0]. E

We also need an observation. Let t be a positive integer and:

�

�
t

2

�
=

Z 1

0

�
1
2

�t=2

yt=2�1e�1=2ydy:

It is possible to find, e.g. in [10], the formulae for � but we can remind for instance
that if t is even then �

�
t
2

�
=
�
t
2 � 1

�
! We have that:
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OBSERVATION 1. At iteration n, we have:

E[�] =
p
sn

p
�p
2



�
an

2

�
;

where:




�
an

2

�
=

�
�
an�1

2

�
p
��
�
an
2

� :
Proof. Let y = sn

�2 , which has a distribution which is a �2 with an degrees of
freedom. We have:

E[�] =
p
snE

"
1p
y

#
;

and:

Ey

"
1p
y

#
=

Z 1

0

1p
y

1
�(an=2)

(1=2)an=2(y)an=2�1e�(1=2)y dy =

Z 1

0

1
�(an)(2)an=2

y(an�1)=2�1e�(1=2)y dy =

�((an � 1)=2)p
2�(an)

Z 1

0

1
�((an � 1)=2)(2)(an�1)=2

y(an�1)=2�1e�(1=2)y dy:

The last integral has an argument which is a �2 density, so it is equal to 1. So we
have:

Ey

"
1p
y

#
=
�((an � 1)=2)p

2�(an=2)
:

which proves the observation. E

Now we want to show that the method is not consistent, that is the sequence
ff�ng doesn’t always converge to the maximum of the function. An example of that
is given by this function f : [0; 2P ]! [0; 2]:

f(x) =

8>>><
>>>:

8x for 0 � x � 1
4

(4�16Q)x+8Q�1
2Q for 1

4 � x � 1
2

1
Q
x for 1

2 � x � Q

1 for Q � x � 2P

(8)

where Q is the third point at which the function is observed, being the first two
points:

x0 = 0 x1 = 2P
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Remembering Lemma 2, we must have P � Q < 2P . Actually it can be seen that
as we increase P , Q tends to be more and more close to P .

We notice that

f(x) = �(x j z2) for
1
2
� x � 2P:

Now we let the algorithm run till we have to observe the function in the interval
(0; 1] at a certain step n1. Since we have:

8 n < n1 f(x) = �(x j zn) for x � 1;

then sn remains constant. In case we never observe f in the interval (0; 1], then
the sequence ff�ng will converge to 1 instead of the maximum 2 attained in x = 1

4 .
Otherwise we indicate with x

00

the first point in (0; 1] in which the function is
observed (at step n1). We should notice that, since �(x j zn1�1) is increasing
between 0 and the lowest point greater than 1 in which the function has been
observed before step n1, we must have x

00 � 1
2 (see Observation 1). Therefore

f(x
00

) = �(x
00 j zn1�1) and f(x

00

) � 1
P . At step n1 we have in the intervals

between Q and 2P :

Gn(x; s0) =
1p
sn
v(x; 1)E[�	(0)] =

1p
sn

1p
2�
v(x; 1)E[�]:

The maximum is in the middle point of the intervals and, in view of Observation
1 , has the value: p

�x

4

!

(an1); (9)

where �x can be at worst of the order of 1
n1

(indeed n1 observations between Q
and 2P divide this interval in n1 + 1 subintervals so that the ratio between the
width of any two subintervals can be only 1 or 2 for any n1 and so the dimension of
any subinterval is between 1

2n1
and 2

n1
). We now consider the interval 0 � x � x

00

.
We have that:

Gn(x; s0) � 1p
sn1

v

 
x
00

2
; 1

!
E

"
�	

 
1� �(x

0

)

�v(x
0 ; 1)

!#
;

where x
0

is given in Lemma 2 and the upper bound is due to the maximization of
v(x; 1) and the minimization of the argument of 	 in the interval. From (2) we
also have

Gn(x; s0) � 1p
sn1

v

 
x
00

2
; 1

!
E

"
�'

 
1� �(x

0

)

�v(x
0 ; 1)

!#
;

where the right side of the inequality is equal to:

v

 
x
00

2
; 1

!

(an1)

2

 
1

[1 + t2](an1�1)=2

!
;
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with:

t =
1� �(x

0

)p
sn1v(x

0 ; 1)
> 0:

Therefore Gn(x; s0) is limited from above by a quantity of this kind:

h
(an1)
1

[1 + t2](an1�1)=2
;

where h is a constant. For n1 great enough this is lower than the expected value in
the intervals between Q and 2P . So the next point will be chosen between Q and
2P or between x

00

and Q but not between 0 and x
00

. By induction it is possible to
show that this is still true for any n � n1 and so we will never observe the function
between 0 and x

00

nor, therefore, between 0 and 1
2 where it attains its maximum.

We observe that in order to have n1 great enough, we should take P great enough.
Indeed, by observing that 8 i � n1; �(x j zi) is non decreasing, we must have

x2 = Q � P; x3 � P

2
; . . . ; xi � P

2i�2 ; . . .

and therefore n1 > logP .
Then finally we have the following observation:

OBSERVATION 2. If the next point in which we observe the function is the one
which maximizesGn(x; s0), the method is not consistent, that is functions exist for
which the sequence ff�ng does not converge to the maximum of these functions.

3.3. A WAY TO RECOVER CONSISTENCY

The reason for the lack of consistency for the previous function is the equality
of f(x) and �(x j zi) in [1

2 ; 2P ]. That implies sn remains constant while an
increases, so the distribution of � will become more and more concentrated in the
neighbourhood of 0, reducing the uncertainty and the expected gain not only in
[x

00

; 2P ], but also in [0; x
00

] where �(x j zi) is different from f(x) and the function
is never observed. Getting more deeply inside the reason for the lack of consistency,
we should note that the concentration of the distribution of � around 0 is due to
the fact that we considered a "regular" function as the path of a Wiener process,
where these paths are with probability 1 extremely irregular (for example almost
nowhere differentiable, oscillating a lot, etc.; for more information see [11]) The
modification below is made necessary by this lack of fit of the model to the most
common real situations. On the other hand it seems to be quite difficult to find
models which fit the real cases and as handy as the Wiener process. In what follows
we will try to remove the lack of consistency but before we want to underline that
the concentration of the distribution of � around 0 is not so bad from a practical
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point of view. A � close to 0 means that the algorithm performs a local search
around the best point as it has been said before, and a final local search around the
record seems to be a good way to end the algorithm. Of course this final search
should not start too early or too late and that depends on the choice of s0 as it is
more extensively shown in the appendix. Now we see how we can remove the lack
of consistency. The main problem is that the set of point fxig at which the function
is observed according to the algorithm is not dense, that is:

lim
n!1

max
i=1;...;n

(xi � xi�1) > 0:

A possible way to avoid this problem is to change the distribution of � so that it
can not become lower than a fixed � > 0. We assume that the a priori distribution
of � is such that s0

�2 has a distribution with density:

f s0
�2
(x) =

8<
:

1
�
�
a0
2

� � 1
2

�a0=2
xa0=2�1e�(1=2)x for 0 � x � s0

�

0 otherwise
(10)

where �
�a0

2

�
is the normalizing constant. We also introduce the following hypo-

thesis:

9 L : 8x1; x2 2 [a; b]

j f(x1)� f(x2) jpj x1 � x2 j
� L (11)

We can prove the following theorem:

THEOREM 3. If the a priori distribution of � is such that (10) holds and if (11)
holds too, then the algorithm is consistent.

Proof. See Appendix B.

We also mention another possible way of recovering consistency. While leaving
unchanged the distribution of � and therefore forgetting the above development, we
could change the loss function and choose the point which minimizes the expected
loss. The new loss function takes into account whether [a; b] has been well globally
explored or not:

L(zn; c) = �f�n + nc+ �max
i
(xi � xi�1);

with � > 0. However in this case the risk is that after a certain step the algorithm
behaves like bisection. It could be interesting to study what happens if we substitute
� with �n ! 0 at a certain rate, which could avoid the drawback outlined above.

4. Conclusion

In this paper the problem of global optimization has been faced by giving a stochas-
tic model of the objective function, which has been seen as a particular realization
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of a stochastic process, the Wiener process, and by defining a loss function, which,
through a Bayesian analysis, has been employed both to choose the point at which
the function should be observed at any step, and to define a stopping rule. The
resulting algorithm tries to get as much information as possible from the values of
the function in the points already selected for the observation, in order to choose
the next point at which the function can be observed. This approach is useful
when the cost of an observation is high so that it is worthwhile to spend a good
deal of resources for an accurate selection of the points at which the function is
observed. Some issues concerning the algorithm have been analyzed such as the
upper bound of the number of iterations of the algorithm with the proposed stopping
rule. Moreover, the Bayesian approach has been exploited not only in the choice of
the Wiener model but also in the estimation of �, the parameter of the process; pre-
vious approaches found in the literature were inspired to classical M.L.E.. Results
similar to the case of the fixed parameter have been obtained, but an additional
hypothesis about f and a modification of the a priori distribution have been neces-
sary to prove consistency. We also have discussed the problems connected with the
use of the Wiener process which, because of its properties, does not seem to fit the
most common real situations. Another possible critic is the difficulty of extension
to the multidimensional case. A possible answer can be the use of Peano maps
to transform a multidimensional problem in a one-dimensional problem. They are
used to transform the multidimensional problem in one-dimensional with a rather
oscillating objective function, which is not so bad since Wiener paths oscillate a
lot, but there is a loss of information in the transformation, for example points
which are close may be transformed in points which are far from each other. For a
deeper discussion about the subject see [13].

Appendix

A. Proof of Theorem 3

Proof. We set a0 = 2 and s0 > 0. We have:

Gn(x; s0) � 1p
sn

v(x; 1)p
2�

E�[�]

and in view of Observation 1:

Gn(x; s0) � v(x; 1)
2




�
an

2

�
:

Notice that an = n+ 2. Using the asymptotic results for n!, we see that:




�
n+ 2

2

�
= O

�
1p
n

�
;
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so that 

�
n+2

2

�
is convergent and must have a finite superior extreme p. So,

independently from n, the expected gain is limited from above by

v(x; 1)p:

Now we are in the same situation of the case �2 a priori known and it is easy to
show that we will stop in a number of steps which is not greater than:

n� =
(b� a)p2

c2

(to show this remember the proofs of Lemma 1 and Theorem 1 for the case � a
priori known).

B. Proof of Theorem 3

We first need two lemmas:

LEMMA 3. If (11) holds, then:

sn � s0 + 4nL2:

Proof. We observe that the term�
f(xn)� �(xn)

v(xn; 1)

�2

can also be written in the following way:"
f(xn)(xn�xi�1)+f(xn)(xi�xn)�fi(xn�xi�1)�fi�1(xi�xn)p

�x
p
(xn�xi�1)(xi�xn)

#2

=

=

"
(f(xn)� fi)(xn � xi�1) + (f(xn)� fi�1)(xi � xn)p

�x
p
(xn � xi�1)(xi � xn)

#2

;

which can be bounded from above by:

�
2
4����(f(xn)� fi)p

xi � xn

����
s
(xn � xi�1)

�x

3
5+

2
4����(f(xn)� fi�1)p

xn � xi�1

����
s
(xi � xn)

�x

3
5

2

;

which, in view of (11) is not greater than [L+ L]2 = 4L2.
Therefore:

sn � sn�1 + 4L2 � s0 + 4nL2:

Let tn = an
2 , where an is a positive integer and:

�(tn) =

Z sn
2�

0

�
1
2

�tn
ytn�1e�y dy:

We can prove that:



BAYESIAN ALGORITHMS FOR ONE-DIMENSIONAL GLOBAL OPTIMIZATION 71

LEMMA 4. For n big enough:

�(tn � 1=2)
�(tn)

� 1:

Proof. After the change of variable x = 1
2y, what we have to prove is that:

Z sn
2�

0
x(tn�3=2)e�x dx �

Z sn
2�

0
xtn�1e�x dx: (12)

We observe that sn
2� � s0

2� ;8 n, so we can choose � in a way that 8 n : pn = sn
2� > 1.

We can rewrite (12) in this way:Z 1

0
(x(tn�3=2) � xtn�1)e�x dx �

Z pn

1
(xtn�1 � x(tn�3=2))e�x dx; (13)

Now we observe that the right side of the inequality can be rewritten in this form:Z pn

1
x(tn�3=2)(x1=2 � 1)e�x dx

which is greater than

Kn =

Z pn

1
(x1=2 � 1)e�x dx > K > 0:

The left side of the inequality can be rewritten in this way:Z 1��

0
x(tn�3=2)(1� x1=2)e�x dx+

Z 1

1��
x(tn�3=2)(1� x1=2)e�x dx: (14)

The first integral of (14) is limited from above byZ 1��

0
(1� �)(tn�3=2)e�x dx

which is lower than K
2 for tn and then n great enough. The second one is limited

from above byZ 1

1��
e�x

which converges to 0 for � ! 0 and then is smaller than K
2 for � small enough. But

that means if we choose � small enough and n great enough, the inequality (13) is
true.

Now we are ready to prove the theorem:

Proof. It is possible to show (see (6)) that � has a distribution with density

f�(�) / 1
(�)a0+1 e

� 1
2
s0
�2 for �2 � �
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and equal to 0 anywhere else. Using Bayes’ formula we obtain that the distribution
of � given the observation f(x0) is proportional to

1
�a0+2 exp

0
B@�1

2

s0 +
�
f(x0)��(x0)

v(x0;1)

�2

�2

1
CA ; (15)

for �2 � �. If we set

s1 = s0 +
h
f(x0)��(x0)

v(x0;1)

i2

a1 = a0 + 1

we can express (15) as

1
�a1+1 e

� 1
2
s1
�2 for �2 � �;

from which it is possible to show that s1
�2 has a distribution with density:

f s1
�2
(x) =

8<
:

1
�( a1

2 )

�
1
2

�a1=2
xa1=2�1e�(1=2)x for 0 � x � s1

�

0 otherwise

where �
�a1

2

�
is the normalizing constant. In general at step n we have:

f sn

�2
(x) =

8<
:

1
�(an2 )

�
1
2

�an=2
xan=2�1e�(1=2)x for 0 � x � sn

�

0 otherwise

where �
�
an
2

�
is again the normalizing constant and an; sn are obtained from

an�1; sn�1 through the updating formulae:

sn = sn�1 +
h
f(xn)��(xn)

v(xn;1)

i2

an = an�1 + 1

where xn is the point in which the function is observed at step n. We know that the
expected gain at step n is:

E�jzn

�
�v(x; 1) 

�
f�n � �(x)

�v(x; 1)

��
:

The expected gain can be limited from above by:

v(x; 1)p
2�

E�[�]

and, in a way similar to the proof of Observation 1, we have the limit from above:

p
sn
v(x; 1)
2
p
�

�n((an � 1)=2)
�n(an=2)

;
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In view of lemma 4, we can consider the limit from above:

H
p
sn
v(x; 1)
2
p
�

where H is a constant. In view of lemma 3, we have that sn cannot increase faster
than n.

By contradiction we assume that:

lim
n

max
i=1;...;n

(xi � xi�1) 6�! 0:

Therefore there exists a subinterval of [a; b] in which we never observe the function.
If we consider the expected gain in the middle point of this interval, the fact that
�2 is always greater than � implies that it will always be greater than h > 0. But
the limitation from above of the expected gain shows that, at step n, the expected
gain cannot be greater than h if we are at a distance of the order of 1p

n
from points

where the function has already been observed. But if we multiply this distance by
the number n of points, we see that for n large enough, the result is greater than the
width of [a; b], which means that in any point of [a; b] the expected gain is smaller
than h, which is a contradiction. The conclusion is that the set fxig of the points at
which the function is observed is dense and then:

ff�ng ! f�:

C. Practical Tests

For the practical tests of the algorithm we refer to six functions, which can be found
in [14, page 177]:
� f1(x) = � sinx� sin 10x

3 � logx+ 0:84x, 2:7 � x � 7:5;
� f2(x) = � sinx� sin 2x

3 , 3:1 � x � 20:4;
� f3(x) =

P5
i=1 i sin((i+ 1)x+ i), �10 � x � 10;

� f4(x) = �(x+ sinx)e�x
2
, �10 � x � 10;

The last two functions f5(x) and f6(x) belong to the Shekel test functions, whose
form is:
� P10

i=1
1

(ki(x�ai)2)+ci
, 0 � x � 10,

where 0 � ai � 10, 1 � ki � 3 and 0:1 � ci � 0:3. The values of these
parameters for the two functions f5 and f6 are given in [14, pp. 178–179] together
with the global maximum values and the global maximum coordinates for all
the six functions. In testing the algorithm A(s0) on these functions it has been
noticed that while it can detect the global maximum region quite quickly, it has
a slow rate of convergence. It has already been observed (see again [14] and
references therein) that the reason for this slowness is that the statistical model of
the function is unsatisfactory to describe the function locally and therefore it is
better to distinguish two phases in the algorithm:
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Table I. Number of iterations in order to accomplish the given accuracy in
the global maximum values and coordinates

function A(s0) P �

f1 s0 = 50 s0 = 500 s0 = 5000
19 25 32 33

f2 s0 = 50 s0 = 500 s0 = 5000
32 38 51 37

f3 s0 = 5000 s0 = 25000 s0 = 50000
27 48 42 see comment

f4 s0 = 5 s0 = 50 s0 = 500
23 32 46 35

f5 s0 = 15000 s0 = 75000 s0 = 150000
30 37 42 42

f6 s0 = 25 s0 = 2500 s0 = 250000
19 23 47 45

1. a global phase based on the statistical model;
2. a local phase where a local search (based only on function values) is started in

the interval [xi�1; xi+1] containing the record point xi.
The stopping rule introduced in this paper can be exploited to stop the global phase
instead of the whole algorithm, i.e. we switch from the global to the local phase at
iteration n if:

max
x2[a;b]

Gn(x; so) � c:

From Theorem 2 we know that the local phase starts after a finite number of
iterations for any c > 0. Decreasing c has the effect of delaying the start of the
local phase and the same effect can, in general, be obtained by increasing s0, as
Table I shows. In all the tests done we used c = 0:015. In Table I the behaviour of
the algorithm for different values of s0 is reported. For values of s0 lower than the
first one given in the table for any function, the algorithm was unable to detect the
global maximum, because the local phase started too early. Any entry of the table
contains the number of iterations necessary to accomplish the accuracy � = 10�6

both in the global maximum value and in the global maximum coordinate. In [14,
p. 180] the same results are given for six different algorithms. In the last column
of table 1 we inserted the results for the P ��algorithm which has been reported
to be the best among the six algorithms, according to the criterion of the number
of iterations in order to accomplish the desired accuracy. For the function f3, [14]
reports a number of iterations equal to 125, but it seems that this is the number
of iterations necessary to detect all three of the global maximum points of this
function, while we stopped after detecting with the given accuracy only one of
them.
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Table II. Distribution of the observations for different values of the parameters

� s0 � s0 � s0 � s0

Interval 15 5000 36 60000 50 200000 100 1000000

[0.00,0.25] 1 1 3 2 3 3 4 5
(0.25,0.50] 1 1 1 1 2 2 3 3
(0.50,0.75] 1 0 2 2 2 3 4 4
(0.75,1.00] 0 1 2 2 2 2 4 4
(1.00,1.25] 0 0 1 1 2 2 3 2
(1.25,1.50] 0 0 4 3 4 3 4 4
(1.50,1.75] 1 0 2 2 2 2 3 2
(1.75,2.00] 0 0 5 6 6 8 6 7
(2.00,2.25] 1 1 2 2 2 1 2 1
(2.25,2.50] 0 0 12 12 10 10 6 7
(2.50,2.75] 0 1 1 1 3 2 3 3
(2.75,3.00] 30 32 8 9 7 7 5 6
(3.00,3.25] 28 26 8 9 6 7 6 5
(3.25,3.50] 1 1 1 1 3 2 3 3
(3.50,3.75] 0 0 11 11 9 9 7 7
(3.75,4.00] 1 1 2 1 2 2 2 2

D. The Choice of the Parameter

In this section we want to show through a practical example that A(s0) is less
sensitive to the choice of s0 thanA(�) to the choice of �. We consider the problem:

max
x2[0;4]

(6x� x2) sin 11x

This function is multimodal with a global maximum in x � 2:999 with value
� 8:999. In order to study the behaviour of the two algorithms for different values
of s0 and �, we consider how they distribute the observations over [0; 4], by
subdividing this interval in 16 subintervals of lenght 0:25 and giving the number
of observations in any of them (the total number of function evaluations is in any
case 65). The results are reported in Table II. We notice that the behaviour ofA(�)
for certain choices of � is absolutely similar to the behaviour of A(s0) for certain
choices of s0. It is interesting to notice that a small choice of � as well as a small
choice of s0 causes the algorithm to reduce to a local search, while increasing �
(and s0) increases the global component of the algorithm, i.e. the search through
the whole feasible set. Also we notice that the choice of an acceptable s0 seems to
be wider than the choice of �. We can not compare the considered interval [15; 100]
for � with the interval [5000; 1000000] for s0, but we can consider the choice of
s0 as the choice of an initial guess for �. For instance a particular choice of s0

corresponds to the initial guess of � given by the median of the a priori distribution
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of �, which is easily found if we remember that s0
�2 has a �2� distribution with

a0 = 2 degrees of freedom. We have the following initial estimates:
� s0 = 5000 => � � 60:0
� s0 = 60000 => � � 207:7
� s0 = 200000 => � � 379:3
� s0 = 1000000 => � � 848:1

These data show two interesting things. The first one is that the initial estimates
are greater than the corresponding values of � for which the behaviour of the two
algorithms are similar. This fact can be explained by noticing that we are estimating
a value which is actually equal to 0 if the sample path represented by the objective
function is regular enough, as it is the case in our example. Generally, after some
iterations inA(s0), the initial estimate has been reduced and the algorithm become
similar to A(�) with a value of � lower than the initial estimate. The second thing
is that the choice of the initial estimate (and then of s0) is much wider than the
choice of � in A(�). Then, while still dependent on the choice of a parameter,
A(s0) seems to be less sensitive to this choice.
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