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Abstract. Inthis paper Bayesian analysis and Wiener process are used in order to build an algorithm
to solve the problem of global optimization. The paper is divided in two main parts. In the first part
an already known agorithm is considered: a new (Bayesian) stopping rule is added to it and some
results are given, such as an upper bound for the number of iterations under the new stopping rule.
In the second part a new agorithm is introduced in which the Bayesian approach is exploited not
only in the choice of the Wiener model but aso in the estimation of the parameter o2 of the Wiener
process, whose value appears to be quite crucial. Some results about this algorithm are also given.
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1. Introduction

We consider the problem of finding:

fr= max. f(x),
where f : R — R is the objective function, assumed to be continuous, and
[a,b] C R isthefeasible set. Many deterministic and probabilistic methods have
been proposed to solve this problem (see [14] and [15]). Among them, those
consisting in giving a stochastic model of the objective function, seem to be of
particular interest. In them the objective function is seen as a particular realization
of astochastic process (see also [9]). Formally, given the stochastic process

{f(r;w),z € X,w € Q}

where () isaprobability space, there existsaw suchthat the objectivefunction f(x)
isequal to f(x; ). For smplicity of investigation, the Wiener processis generally
used as a stochastic process to model the objective function. The advantage of
this process is mainly due to the simplicity of the formulae used to update the
distribution of the random variables f (z; w) of the process, after each observation
of the abjective function. Some possible critics to this choice will be discussed in
Section 3. In Section 2 we give a quick description of the algorithm (see also [9]
or [16]) with the introduction of a new stopping rule. We also give some results
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about the algorithm. Section 3 gives analogous results but for the case in which
the parameter o of the Wiener processis not a priori given, but only an a priori
distribution is defined on it.

2. A New Stopping Rule

We first introduce some notation:
—r1=a<1< - <zy_1 < x, = b are the points where the function has
been observed till iteration n;
— f1,..., fn arethe corresponding function values,
— fr=max{f1,..., fn} istherecord,
— 2zn = (21,...,2Zpn, f1,-.., [n) IS the vector of the information collected till
iteration n;
Wealsorecall that, if wemodel thefunctionwith the Wiener processwith parameter
o, the distribution of the random variable f (z), for z € [z;_1, z;] and conditioned
on theinformation z,, is normal with mean:
T —Ti 1 T; — T

+ fiii————,
1 T — Ti-1

:U*(:E | zn) =fi

Tr; — Tj—

and variance:
2(«’76 —z;_1)(z; — )
Ti — Ti—1

v (z0 | z) =0

(see, e.g. [6], [9]).
We introduce the following function:
T, (i) = Blmac(f(«) ~ £3,0} | 2 = [ (¢ = ) a0, ®

n

where F), is the normal distribution with mean p(x) and variance v(x; o) (here
and in what follows the conditioning on z,, of 1 and v is understood). We can also

write: i
Tn(z;0) =v(x;0)¥ <ﬂ;(_x—,lz(;v))
where
(o) = [ (=) dot) = ¢(o)  alL— o)), @

¢ is the standardized normal distribution and ¢ its density (see, e.g. [3] for more
information about ¥). We have that (1) can be interpreted as the expected gain, or
the expected increment with respect to the record f,;, if we observe the functionin
point z.

In order to introduce a new stopping rule we need to introduce the loss function:

L(Zn,C) = _f;; + nc,
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where ¢ isthe cost of an observation of the function. We want to stop the search at
iteration n if the expected loss at iteration n + 1 is greater or equal than theloss at
iteration n, independently from where we put the next observation.

Therefore we have:

stopif L(zn;c) < min E[L(zp,x, f(x);¢) | 2]

z€[a,b]
or, equivalently:
stopif max T,(z;0) <ec. (3)
z€a,b]

Asan interpretation of this stopping rule we can say that we stop when the expected
improvement over the current record is smaller than the cost of an observation of
the function. It is questionable whether it is possible to find always a common unit
of measure for the cost of an observation and the expected gain. All the same the
form of the stopping rule is such that ¢ can also be interpreted as a given accuracy
and we stop when the expected accuracy is lower than ¢, as can be clearly seenin
(3). The same cost structure was used, e.g. in [1]. Finally we give a quick descrip-
tion of the algorithm denoted with A(o), in order to underline its dependence on
the choice of the parameter o

at iteration n:
1. choose:
y=aqg max_ T,(z;0); 4
z€a,b]

2. if T),(y; o) < cthen STOP otherwisego to 3,;
3.ify € (wi—1,z;) for somei, 2 < i < n,thensetV j > i :z;41 = z; and
;=Y
4. evaluate f iny, set 241 = 2, U (y, f(y)) and f5,5 = max{f3, f(y)};
5. go to the next iteration.
Therulefor the selection of the next point at which the function hasto be observed
is given by (4) and it is called the one-step optimal approach, in which the next
point is chosen in an optimal way assuming that it will be the last point at which
the function will be observed. It would also be possible to think about k-step 1ook-
ahead rules, £ > 1, in which at any iteration we should find where to put the next
k observations in order to maximize the expected improvement over the current
value of the record f,; (see, e.g. [9]). The problem is that the formulae become
rather cumbersome even for £ = 2 and it is not clear if thisincrease in difficulty
carries better performance of the algorithm.
Now we give some results about the algorithm. First we need the following
lemmawhich shows that the algorithm never puts observations "too close" to each
other:
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LEMMA 1. Assuming that the function has been observed in points z1, ..., z,,
then:

Ve @ 3, 1<i<n suchthat |z—=z;|<¢: T,(z;0)<c,

_ (c 27r>2
c= .
o

Therefore the algorithmwill never observe the function at these points.
Proof. First we note that:

where

T (z;0) <wv(x;0)¥(0) =

We now set Ap = z; — z. Then we have:

UEZ_:) _ (\/;_ﬂ) (Az —Aip)Ap

We want to show that if Ap < ¢ then the given limitation from above of the
expected gain is smaller than c. It is equivalent to prove that:

Ap(Az — Ap) < (c@)z

Az

g

Ap(Az — Ap) <cAx

We observe that if Ap < ¢, being (Az — Ap) < Az, the inequality is true. That
means the algorithm can not choose the next point in a position at a distance that
is smaller than ¢ from a point in which the function has been already observed. O

Now it is easy to give an upper bound for the number of iterations with the given
stopping rule. We can not put a new observation at a distance smaller than @ from
points where the function has been already observed. That meanswe will certainly
stopin, at most, b%‘l iterations. So we have proved the following theorem:

THEOREM 1. The stopping rule

stopif max T,(z;0) <c

z€[a,b]
causes the algorithm to stop in a finite number of steps bounded from above by:

b—a o?(b—a)
¢ (V27m)?

n* =
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In particular it is possibleto show that there exists at least onefunction (for example
the constant one), for which the number of iterations hasthe order of magnitude of
n* for ¢ tending to O.

Indeed it can be shown for the constant function that the first 2" + 1 points
divide [a,b] into 2" equal subintervals and the maximum expected gain in any
subinterval is

v("H"o) o [Ax
\/ 27 2\ 2n”

Then after n. steps we have Az = O (”‘T“) and therefore the expected gain will
belessthan c if

(b —a)o? (1 )
K (4(6\/271’)2 4"
Lemma 1 could also be exploited to show that:

Jim :rg?fn(:vi —zi-1) =0, (5)
i.e. the set of points at which the function is observed if the algorithm is never
stopped, isdensein [a, b]. Itisthenimmediateto prove consistency of thealgorithm,
i.e.:
lim fi=f*

n—oo

(see, e.g. [2] or [16] for proofs of consistency).

3. TheCaseo? Not apriori Given

Till now we haveworked with the hypothesisof o2 a priori known. Now wewant to
turn to the more realistic situation in which 2 is not known and must be estimated
through the observations (see also [4] and [5]). We want to point out the reason
for this further development. The choice of o is crucial for the good behaviour
of the algorithm as it has been seen through experimentation (see the appendix).
It is possible to understand that by studying the behaviour of the algorithm for
o — 0and o — oo. Inthefirst case al the observations tend to be concentrated
around the best current point, so that we reduce to a local search and we lose
any characteristic of globality of the algorithm. In the second case we reduce to
a bisection method, where the point dividing the subinterval of maximum lenght
is chosen and which has not any good local characteristic and does not take into
account information given from function values. So we should avoid values of &
too small or too big. Theproblemisthat "small" and"big" are not absol ute concepts
but are relative to the form of the function. A possible solution isto evaluate f in
some points and find an estimate of o (for example through an estimator inspired
to the M.L.E., see [12]). The problem is that this kind of agorithm is generally
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meant for functions whose evaluation implies big costs, so that it would seem
preferable to avoid supplementary evaluations. Here we take a Bayesian approach,
by building a prior model both on the objective function and on the parameter of
the Wiener process. The proposed algorithm is adaptive in the sense that exploits
the information given by function values to give information about o through the
updating of aprobability distribution function on o. For other considerations about
the algorithm and for a practical test which shows what has been said above, see
aso[§].

3.1. UPDATING FORMULAE

We will give o2 not an a priori value but an a priori distribution which will be
updated after every observation. We consider asample X1, ..., X,, from anormal
distribution with known mean m and variance o2 . It is well known that

E?:l(Xi - m)z

o2

7 =

has a x? distribution with n degrees of freedom (see, for example, [3]). As a
consequence, we will assume that the a priori distribution of o2 is such that the
distribution of % isax? with ag = 2 degrees of freedom, where so > Oisavalue
a priori fixed. It is important to see how the distribution of o2 is updated after
every observation. We shall proof that 23 is distributed as a x? with a,, degrees of
freedom; thisis true for n = 0 and will be demonstrated to be true for every n by
induction, together with the formulae to update s,, and a,,. We remember that if
y = g(x), g isaone-to-one function and X hasdensity fx(z), then Y has density

dg—(y)

o fx(g () (6)

fr(y) =

for every y inside the range of the function ¢ (see [10]). If we set

Sn
T=—
o2’

then we have that the density of o is proportional to:

1 sn

_1s
- 2 52
O-an+1e 7

Now using Bayes formula we obtain

oo | F@m) o —— (e~ W2 sn /a2y L = 1/20) (@) —lan)) ot P

gan+tl o

L 2ot (Hoptirnl
O'a”+2 ’



BAYESIAN ALGORITHMS FOR ONE-DIMENSIONAL GLOBAL OPTIMIZATION 63

which means that % is distributed as a x? with a,,,1 degrees of freedom, where
Gnt1=ap+1
f(zy) — N(mn)r
v(zp; 1) '

Now we can write a new algorithm, which we denote with A(sp) to underline its
dependence on sp. The agorithm is equal to A (o) but for the substitution of the
expected gain T, (x; o) with the expected gain:

BV (T, (x;0)),

or, equivalently from the point of view of the choice of the points at which the
function is observed, with the function:

1

NG

Sp+1 = Sp + [

Gn(w;SO) = Ea|zn [Tn(:E’U)]a

which has been used in the practical tests. It is possible to obtain an explicit
formula for the expected gain through heavy but elementary and non interesting
computations (see [7]).

One question might arise at this point: what is the advantage of removing the
dependence of the algorithm on the parameter o, if, in doing this, we introduce a
new parameter sq ?

Thefact isthat while abad choicefor o hasaconstant influence onthe algorithm
through all the iterations, a bad choice for so can be adaptively corrected by the
observations. In other words o is afixed estimate while sg isonly an initial guess
which can be corrected. Therefore we expect that A(sp) is less sensitive to the
choice of the parameter. In appendix D this conjecture is made more clear through
an example.

3.2. FINITENESS OF THE ALGORITHM AND LACK OF CONSISTENCY

Now we give an upper bound of the number of iterations after which the given stop-
ping rule causesthe algorithm to stop. We can prove the following theorem:

THEOREM 2. Given the stopping rule

stop if ma>§) Gn(z; s0) < ¢,

z€la,b]

then the algorithm stops in at most:

iterations, where;

p-so 1(59))
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Proof. See Appendix A.

In order to prove the lack of consistency of the algorithm we need to introduce a
lemma:

LEMMA 2. At any step and with any a priori distribution the maximum of the
expected gainintheinterval [z;_1, ;] should be searched for, under the hypothesis
Af = f(z;) — f(z;—1) > 0, intheinterval [z, z'], where:

T, 1+ x;
2
’ Af A$

2(fn—1) 2

7 fifl‘|‘fi.

2
Proof. We do not give the details of the proof, which are trivial (see [7]). By
examinining the derivative:

T =

(")

T, (z;0) = v (z;0)¥ (f;{_—/‘(x)) N

v(z;0)
o (B (5o

we see that, for any value of o, it is positive in [z;_1,Z] and negative in [/, x;],
where 2’ is the point which minimizes:

()
Then we have:

VoandV z € [z;—1,T] : Tn(T;0) > Ty(z;0),

and:
VoandVz € [2,z;] : T,(z';0) > To(x;0).

Therefore the maximum of the expected gainisin [z, z']. 0

We also need an observation. Let ¢ be a positive integer and:

t o FINMZ
I‘<§> :/0 <§> yH? Ye—1/2ydy.

Itispossibleto find, e.g. in[10], the formulae for I' but we can remind for instance
that if ¢ iseventhenT (%) = (4 — 1)! We havethat:
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OBSERVATION 1. At iteration n, we have:

Bl = vaLer ().

where:

) (an> (=)
2) VAl (%)
Proof. Lety = 23, which has a distribution which is ax? with a,, degrees of

freedom. We have:

1
Elo] = /spnE | —|,
o= v | %]

and:

1
= fen-1)/2-1,-(1/2)y §,, —
/o I‘(an)(Z)ﬂn/Zy e Yy

an ~ 1) /2 (an—1)/2—-1_,—(1/2)y
\/_I‘ (an) / I'((ap — 1) /2)( )an—l)/zy € dy.

The last integral has an argument which is a x? density, so it is equal to 1. So we
have:

o l 1 ] _ T((an—2)/2)
VY V2 (an/2)
which proves the observation. O

Now we want to show that the method is not consistent, that is the sequence

{f}} doesn’t always converge to the maximum of the function. An example of that
isgiven by thisfunction f : [0,2P] — [0, 2]

8z for0<z <%
(4-160)1180 1 for 1 < o <
5% or 3 << Q
1

forQ§x§2P

where ( is the third point at which the function is observed, being the first two
points:

20=0 x1=2P
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Remembering Lemma 2, we must have P < Q < 2P. Actually it can be seen that
asweincrease P, () tends to be more and more closeto P.
We notice that 1
f(z) =p(z | z) for > <z <2P
Now we let the algorithm run till we have to observe the function in the interval
(0,1] at acertain step n1. Since we have:

Vn<ni f(z)=p(x|z,) forz > 1,

then s,, remains constant. In case we never observe f in the interval (0, 1], then

the sequence { f} will convergeto 1 instead of the maximum 2 attained in z = %1.

Otherwise we indicate with z" the first point in (0,1] in which the function is
observed (at step n1). We should notice that, since p(z | zp,—1) IS increasing
between 0 and the lowest point greater than 1 in which the function has been
observed before step n1, we must have z” > 3 (see Observation 1). Therefore
f(z") = p(@" | zn—1) and f(z") < 5. At step ng we have in the intervals
between Q and 2P:

1 1 1
v(x; ) E|locW(0)] = ——uo(z; 1) E|o].
The maximum is in the middle point of the intervals and, in view of Observation
1, hasthe value:

(\/A_ZL') 7(an1)7 9)

Gn(l"y 30) =

4

where Az can be at worst of the order of - (indeed n1 observations between Q
and 2P divide this interval in n; + 1 subl ntervals so that the ratio between the
width of any two subi ntervalscan be onIy 1or 2for any n1 and so the dimension of
any subinterval is between » - and ) We now consider theinterval 0 < z < z".

We have that:
1 z 1—p(z)
= ()l (i)

where 2’ is given in Lemma 2 and the upper bound is due to the maximization of
v(z; 1) and the minimization of the argument of ¥ in the interval. From (2) we

aso have
) 1 z 1—p(z)
Gn(:L",so) S M’U (3,1) FE )2 (m)] 5

where the right side of the inequality is equal to:

x_”_ 7 (an,) 1
(2) 5 (waemm)

Gn(x; 30) <
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with:

1—p(a)

N snlv(x';l) > 0.

Therefore G, (; so) is limited from above by a quantity of this kind:

1

h7(an1) [1 + t2](“nr1)/2’

where h isaconstant. For n, great enough thisislower than the expected valuein
the intervals between Q and 2P. So the next point will be chosen between (Q and
2P or between z” and Q but not between 0 and z". By induction it is possible to
show that thisisstill true for any n > n, and so we will never observe the function
between 0 and 2" nor, therefore, between 0 and 1 where it attains its maximum.
We observe that in order to have n; great enough, we should take P great enough.
Indeed, by observing that V i < n1, u(z | z;) isnon decreasing, we must have

P
szQZP, 1'325, ey xZZﬁ,
and therefore ny > log P.

Then finally we have the following observation:

OBSERVATION 2. If the next point in which we observe the function is the one
which maximizes G, (; so), the method is not consistent, that is functions exist for
which the sequence { f,;} does not converge to the maximum of these functions.

3.3. A WAY TO RECOVER CONSISTENCY

The reason for the lack of consistency for the previous function is the equality
of f(z) and pu(z | %) in [%, 2P]. That implies s, remains constant while a,
increases, so the distribution of o will become more and more concentrated in the
neighbourhood of 0, reducing the uncertainty and the expected gain not only in
[z",2P], butasoin[0,z"] where uu(x | z) is different from f(z) and the function
isnever observed. Getting moredeeply inside the reason for the lack of consistency,
we should note that the concentration of the distribution of o around O is due to
the fact that we considered a "regular” function as the path of a Wiener process,
where these paths are with probability 1 extremely irregular (for example almost
nowhere differentiable, oscillating alot, etc.; for more information see [11]) The
maodification below is made necessary by this lack of fit of the model to the most
common real situations. On the other hand it seems to be quite difficult to find
modelswhich fit thereal casesand ashandy asthe Wiener process. In what follows
we will try to remove the lack of consistency but before we want to underline that
the concentration of the distribution of o around O is not so bad from a practical
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point of view. A o close to 0 means that the algorithm performs a local search
around the best point asit has been said before, and afinal local search around the
record seems to be a good way to end the algorithm. Of course this final search
should not start too early or too late and that depends on the choice of sp asit is
more extensively shown in the appendix. Now we see how we can remove the lack
of consistency. The main problem is that the set of point {z; } at which thefunction
is observed according to the algorithm is not dense, that is:
lim max (z; —z; 1) > 0.

n—o04=1....,n

A possible way to avoid this problem is to change the distribution of o so that it
can not become lower than afixed e > 0. We assume that the a priori distribution
of o issuchthat 23 hasadistribution with density:

ag/2
{ A (3)" P am0i2 101720 for 0 < o <

(=}

5(%) _
0 otherwise

fs

g (2) = (10

where (“—20) is the normalizing constant. We aso introduce the following hypo-
thesis:

3L : Vzi,72 € [a,b]

| fz1) — f(z2) |

| 71— z2 |

<L (11)

We can prove the following theorem:

THEOREM 3. If the a priori distribution of o is such that (10) holds and if (11)
holdstoo, then the algorithmis consistent.
Proof. See Appendix B.

We aso mention another possible way of recovering consistency. While leaving
unchangedthedistribution of & and thereforeforgetting the above devel opment, we
could change the loss function and choose the point which minimizes the expected
loss. The new loss function takesinto account whether [a, b] hasbeen well globally
explored or not:

L(zn; ) = —fp + ne+ emax(z; — zi-1),
1

with e > 0. However in this case the risk is that after a certain step the algorithm
behaveslike bisection. It could beinteresting to study what happensif we substitute
e with ¢,, — 0 at acertain rate, which could avoid the drawback outlined above.

4. Conclusion

In this paper the problem of global optimization hasbeen faced by giving astochas-
tic model of the objective function, which has been seen as a particular realization
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of astochastic process, the Wiener process, and by defining aloss function, which,
through a Bayesian analysis, has been employed both to choose the point at which
the function should be observed at any step, and to define a stopping rule. The
resulting algorithm tries to get as much information as possible from the values of
the function in the points already selected for the observation, in order to choose
the next point at which the function can be observed. This approach is useful
when the cost of an observation is high so that it is worthwhile to spend a good
deal of resources for an accurate selection of the points at which the function is
observed. Some issues concerning the algorithm have been analyzed such as the
upper bound of the number of iterations of the algorithm with the proposed stopping
rule. Moreover, the Bayesian approach has been exploited not only in the choice of
the Wiener model but also in the estimation of o, the parameter of the process; pre-
vious approaches found in the literature were inspired to classical M.L.E.. Results
similar to the case of the fixed parameter have been obtained, but an additional
hypothesisabout f and amodification of the apriori distribution have been neces-
sary to prove consistency. We also have discussed the problems connected with the
use of the Wiener process which, because of its properties, does not seemto fit the
most common real situations. Another possible critic is the difficulty of extension
to the multidimensional case. A possible answer can be the use of Peano maps
to transform a multidimensional problem in a one-dimensional problem. They are
used to transform the multidimensional problem in one-dimensional with arather
oscillating objective function, which is not so bad since Wiener paths oscillate a
lot, but there is a loss of information in the transformation, for example points
which are close may be transformed in points which are far from each other. For a
deeper discussion about the subject see[13].

Appendix
A. Proof of Theorem 3

Proof. We set ag = 2 and sg > 0. We have:

1 v(x;1)
Vs V2r

and in view of Observation 1;

Gn(z; s0) <

E?[o]

Notice that a,, = n + 2. Using the asymptotic results for n!, we see that:

1(59) -0 (%)
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so that v "—erz is convergent and must have a finite superior extreme p. So,
independently from n, the expected gain is limited from above by
v(z; D)p.

Now we are in the same situation of the case o a priori known and it is easy to
show that we will stop in anumber of steps which is not greater than:

* (b B a)pZ
n = —02
(to show this remember the proofs of Lemma 1 and Theorem 1 for the case o a
priori known).

B. Proof of Theorem 3

Wefirst need two lemmas;
LEMMA 3. If (11) holds, then:

sp < So + 4nL2.
Proof. We observethat the term

[ f(@n) — ()]
v(2n; 1)
can also be written in the following way:

-f(wn)(xn_mil)+f(xn)($i_$n)_fi($n_$il)_fi1($i_$n)] ? _
VAzZ /(2 —7i1)(@i—2n)

(f () — fi)(@n — 7 1) + (F (20) — fi 1) (i — m] ?
\/A_«T\/(xn - «Tz'—l)(xz’ - xn) ’

which can be bounded from above by:

r 2
o ||Ulanlf)) flen )|, {‘ (f(@n) = fi-2) | [(@i = 20)
- NI Az J [ T — Ti_1 Az J ’
which, inview of (11) is not greater than [L + L]? = 4L°.
Therefore:

S < Sp_1 + 4L? < 5o + 4nL>.

Lett, = %, wherea, isapositiveinteger and:

2o\,
B(ty) =/2 <§> yrle v dy.
0

We can prove that:
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LEMMA 4. For n big enough:

Bltn)  ~

Proof. After the change of variable z = %y, what we have to proveisthat:
/Z gt =32 =7 dg < /Z ztnle T dg. (12)
0 0

We observethat 32 > 22,V n, sowecanchoosee inaway thatVn : p, = 3= > 1.
We can rewrite (12) in this way:

/l($(tn_3/2) _ xtn—l)e—l‘ diU S /
0

1

Pn

(ztr 1 — g(tn=3/2)) =2 g, (13)
Now we observe that the right side of the inequality can be rewritten in this form:
/pn z(tn=3/2) (:131/2 —1e “dz
1
which is greater than
K, = /lp”(xl/z — e "de> K > 0.
The left side of the inequality can be rewritten in thisway:

16 1
/ x(tn_3/2) (1 _ xl/Z)e—x dz + x(tn —-3/2) (1 — ;1;1/2)6—13 dz. (14)
0 1-6

Thefirst integral of (14) islimited from above by
1-6§
/ (L= 8)(tn 3D gy
0

which is lower than % for ¢,, and then n great enough. The second one is limited
from above by

1
1-6

which convergesto Ofor § — 0 and then issmaller than % for 6 small enough. But
that means if we choose 6 small enough and n great enough, the inequality (13) is
true.

Now we are ready to prove the theorem:

Proof. It ispossible to show (see (6)) that o has a distribution with density

1 159
folo) x (U)ao+1e 252 foro?>e
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and equal to 0 anywhere else. Using Bayes' formulawe obtain that the distribution
of o given the observation f (o) is proportional to

f(x0)—u(m0) | 2
1 150 + ( Uo(mo;l) ) ) (15)
O-a0+2 2 0_2 ’

for 02 > . If we set

_ 2
S1 =580+ I:f(IUO()xO’l;-()IO)]
ap=ap+1

we can express (15) as

1 1=
me Z;Ji fOI’ 0'2 2 €,

from which it is possible to show that 24 has a distribution with density:

2

1 (l)al/Z 701/2=1=(1/2)z for 0 <z< 8_61
0 ’ otherwise

where 3 (%) isthe normalizing constant. In general at step n. we have:

2

an /2
for () = 4 iy ()2 e 02 foro <o < s
a2 0 otherwise

where 3 (%) is again the normalizing constant and ay, s, are obtained from
an_1, Sp—1 through the updating formulae:

Tn)—p(Tn 2
o= s+ [ Lot
ap =ap 1+1
where x,, isthe point in which the function is observed at step n. We know that the
expected gain at step n is:

gl {av(mi 1)) ({:U_(—f(f;)ﬂ '

The expected gain can be limited from above by:
v(z; 1)
Vor

and, in away similar to the proof of Observation 1, we have the limit from above:

U(«T; 1) /Bn((an - 1)/2)
Vinodm  fulanfd)

E?[o]
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In view of lemma 4, we can consider the limit from above:
v(z; 1)
H.\/s
Nz
where H isaconstant. In view of lemma 3, we have that s,, cannot increase faster

than n.
By contradiction we assume that:

lim ~max (:UZ — xz’—l) 7L> 0.
n ¢=1,.,n

Thereforethere existsasubinterval of [a, b] in which we never observethe function.
If we consider the expected gain in the middle point of this interval, the fact that
o? is dways greater than e implies that it will always be greater than » > 0. But
the limitation from above of the expected gain shows that, at step n, the expected
gain cannot be greater than h if we are at adistance of the order of ﬁ from points
where the function has already been observed. But if we multiply this distance by
the number n of points, we seethat for n large enough, the result is greater than the
width of [a, b], which meansthat in any point of [a, b] the expected gain is smaller
than h, which isacontradiction. The conclusionisthat the set {x;} of the points at
which the function is observed is dense and then:

{fa} = 1

C. Practical Tests

For the practical tests of the algorithm we refer to six functions, which can befound
in[14, page 177]:

— fi(z) = —sinz —sin1¥ —logz + 0.84z, 2.7 <z < 7.5;

— fao(z) = —sinz —sinZ, 3.1< 7 <204

— fa(z) = X2 qisin((i + Dz +1i), —10 <z < 10;

— fa(z) = —(z + sinz)e™*", —10 < z < 10;
Thelast two functions f5(x) and fe(z) belong to the Shekel test functions, whose
formis:

g-glm 0 <z <10,

where 0 < q; < 10,1 < k; < 3and 0.1 < ¢; < 0.3. The values of these
parametersfor the two functions fs and fg are givenin [14, pp. 178-179] together
with the global maximum values and the global maximum coordinates for all
the six functions. In testing the algorithm A(sp) on these functions it has been
noticed that while it can detect the global maximum region quite quickly, it has
a slow rate of convergence. It has already been observed (see again [14] and
references therein) that the reason for this slowness s that the statistical model of
the function is unsatisfactory to describe the function locally and therefore it is
better to distinguish two phasesin the algorithm:
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Table I. Number of iterations in order to accomplish the given accuracy in
the global maximum values and coordinates

function A(s0) p*

fl 80:50 802500 8025000

19 25 32 33
f2 so = 50 so = 500 so = 5000

32 38 51 37
fa so=5000 so=25000 so= 50000

27 48 42 see comment
f4 So=5 So=50 So=500

23 32 46 35
fs so =15000 so= 75000 s = 150000

30 37 42 42
fe s0=25 so=2500 sp = 250000

19 23 47 45

1. aglobal phase based on the statistical model;
2. alocal phasewhere alocal search (based only on function values) is started in
theinterval [z;_1, z;11] containing the record point z;.
The stopping ruleintroduced in this paper can be exploited to stop the global phase
instead of the whole algorithm, i.e. we switch from the global to the local phase at
iteration n if:

max G (z;s,) < c.
z€[a,b]

From Theorem 2 we know that the local phase starts after a finite number of
iterations for any ¢ > 0. Decreasing ¢ has the effect of delaying the start of the
local phase and the same effect can, in general, be obtained by increasing sg, as
Table| shows. In all the tests done we used ¢ = 0.015. In Table | the behaviour of
the algorithm for different values of s is reported. For values of sg lower than the
first one given in the table for any function, the algorithm was unabl e to detect the
global maximum, because the local phase started too early. Any entry of the table
contains the number of iterations necessary to accomplish the accuracy ¢ = 10~°
both in the global maximum value and in the global maximum coordinate. In [14,
p. 180] the same results are given for six different algorithms. In the last column
of table 1 we inserted the results for the P*—algorithm which has been reported
to be the best among the six algorithms, according to the criterion of the number
of iterationsin order to accomplish the desired accuracy. For the function f3, [14]
reports a number of iterations equal to 125, but it seems that this is the number
of iterations necessary to detect all three of the global maximum points of this
function, while we stopped after detecting with the given accuracy only one of
them.
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Table|l. Digtribution of the observations for different values of the parameters

[oa S0 [oa S0 o S0 [og S0
Interval 15 5000 36 60000 50 200000 100 1000000

[000025] 1 1 3 2 3 3 4 5
(025050 1 1 1 1 2 2 3 3
(0.50,0.75] 1 0 2 2 2 3 4 4
(0.75,1.00) O 1 2 2 2 2 4 4
(2.00,1.25] O 0 1 1 2 2 3 2
(125150 0 0 4 3 4 3 4 4
(150175 1 0 2 2 2 2 3 2
(1752000 0 O 5 6 6 8 6 7
(200,2.25] 1 1 2 2 2 1 2 1
(225250 O 0 12 12 10 10 6 7
(250,2.75] O 1 1 1 3 2 3 3
(2753000 30 32 8 9 7 7 5 6
(3.00,3.25] 28 26 8 9 6 7 6 5
(325350 1 1 1 1 3 2 3 3
(350,3.75] O 0 11 11 9 9 7 7
(3.75,4.000 1 1 2 1 2 2 2 2

D. TheChoice of the Parameter

In this section we want to show through a practical example that A(sp) is less
sensitiveto the choiceof sg than .A(o) to the choice of o. We consider the problem:

max (6z — z?)sinllz
z€[0,4]

This function is multimodal with a global maximum in z ~ 2.999 with value
~ 8.999. In order to study the behaviour of the two algorithms for different values
of sp and o, we consider how they distribute the observations over [0, 4], by
subdividing this interval in 16 subintervals of lenght 0.25 and giving the number
of observationsin any of them (the total number of function evaluationsisin any
case 65). Theresults are reported in Table I1. We notice that the behaviour of A (o)
for certain choices of ¢ is absolutely similar to the behaviour of A(sg) for certain
choices of sg. It isinteresting to notice that a small choice of o as well as a small
choice of sg causes the algorithm to reduce to a local search, while increasing o
(and sg) increases the global component of the algorithm, i.e. the search through
the whole feasible set. Also we notice that the choice of an acceptable sg seemsto
be wider than the choice of . We can not compare the considered interval [15, 100]
for o with the interval [5000, 1000000] for sg, but we can consider the choice of
so as the choice of an initial guess for o. For instance a particular choice of sg
correspondsto theinitial guessof o given by the median of thea priori distribution
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of o, which is easily found if we remember that >3 has a x?— distribution with
ap = 2 degrees of freedom. We have the following |n|t|al estimates:

— 5o =5000 => o ~ 60.0

— 59 =60000 => o =~ 207.7

— sp = 200000 => o ~ 379.3

— sp = 1000000 => o =~ 848.1
These data show two interesting things. The first one is that the initial estimates
are greater than the corresponding values of o for which the behaviour of the two
algorithmsare similar. Thisfact can be explained by noticing that we are estimating
avaluewhichis actualy equal to O if the sample path represented by the objective
function is regular enough, as it is the case in our example. Generally, after some
iterationsin A(so), theinitial estimate has been reduced and the algorithm become
similar to A(c) with avalue of o lower than the initial estimate. The second thing
is that the choice of the initial estimate (and then of sg) is much wider than the
choice of o in A(c). Then, while still dependent on the choice of a parameter,
A(so) seemsto beless sensitive to this choice.
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